Astrophotonics

One of the problems of contemporary astronomical instrumentation is the economical and structural sustainability of conventional bulk optic instrumentation in the coming era of extremely large telescopes. Additionally, the increasing need for large statistical datasets in astronomical research requires the simultaneous observation of many objects. Both trends point towards a massive increase of the size, mass and cost of the instruments which may overwhelm the cost of the telescope itself.

Astrophotonics could provide a solution to this vicious circle by providing miniaturized, light-weight components based on advanced micro-optics and laser technologies (photonics). Invented 30 years ago, multi-object spectrographs exploiting optical fibers are currently able to observe 100’s of astronomical objects simultaneously, allowing large surveys of stars and galaxies in our universe. Additionally, astrophotonics dramatically improves the performance/accuracy of astronomical instrumentation, as for the case of miniaturized beam combiners for astronomical interferometry based on integrated optics, phase mask coronagraphs, or laser frequency combs for ultra-precise calibration of high resolution spectrographs. As a general trend in the years to come, the miniaturization, the increased performance and the reduced needs for instrumentation maintenance will be the cornerstones of astrophotonic developments, with integrated optics technologies playing a major role.

The project “Integrated Astrophotonics” at innoFSPEC aims at a comprehensive investigation of application of integrated optics to astrophotonics, encompassing the development of components, laboratory test in realistic conditions, and, possibly, their test on sky. Additionally, by addressing cutting-edge technologies the team is committed to contribute significantly to the advance of fundamental and applied photonics, which may open the way to significant technology transfer to industry on a medium time scale.

“Integrated Astrophotonics” includes three main research activities:

  1. Development of integrated optics frequency combs for astronomical spectroscopy. [read more]
  2. Development of integrated optics for near-infrared astronomical spectro-interferometry. [read more]
  3. Improving the injection of starlight in integrated optics devices by means of a combination of partial adaptive optics (AO) correction and photonic lanterns. [read more]


Group members:

Dr. Stefano Minardi (Research group leader) [link to personal page]
Dr. Jose Chavez Boggio (Senior scientist)
Dr. Ettore Pedretti (Senior scientist)
Daniel Bodemüller (Scientist)

 

Open position: Doctoral student - applications of photonic reformatting for astronomical interferometry


 

Contact:

Dr. Stefano Minardi

Phone: +49 331 / 7499-687

Email: Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!

 

Topics for Bachelor theses:

Title 1: Development of experimental method for the characterisation of uniformity in waveguide arrays

Title 2: Numerical design of an adaptive optics testbench for astronomical instrumentation.

Title 3: Explore the potential of multi-core fibres as directional stress-sensors. 


Projects for students:

Topic 1: Characterization of SiN integrated microrings and waveguides

Topic 2: Simulation and design of next generation SiN resonators/waveguides